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The rate controlling step in Case II transport kinetics is the swelling which occurs at the internal moving 
boundary. A physical model describing the swelling kinetics of glassy polymers in liquids is presented 
here. Using a thermodynamic argument, the stress induced by the penetrant on the glassy matrix is 
evaluated in terms of the penetrant concentration. The velocity of the swelling front is expressed in 
terms of the solvent stress, using the same functional relationship which gives the mechanical craze 
propagation rate, in terms of the mechanical stress. The resulting model permits the prediction of the 
kinetics of the swelling front from an independent characterization of mechanical properties. 

INTRODUCTION 

Significant interest has been devoted to the experimental 
description of diffusion behaviour of small solvent mole- 
cules in glassy polymers. The diffusion of n-alkanes in 
polystyrene '-4,  n-alkyl alcohols in poly(methyl 
methacrylate) s-7 and n-alkanes in PS-PPO blends 8-m has 
been studied extensively. 

The sorption process is non-Fickian over well-defined 
boundaries of temperature and of solvent activity. More 
precisely, above a lower limiting value of solvent activities 
there exists a temperature interval in which the weight gain 
during sorption is proportional to the first power of time 
(Case II transport), rather than to its square root (Fickian 
behaviour). Outside that interval, at lower temperatures, 
Fickian behaviour is observed while at higher temperatures 
the weight gain becomes proportional to a power of time 
with an exponent decreasing from unity to 1/2 with in- 
creasing temperature". In addition, the dimensions of the 
samples are also shown to influence the sorption behaviour '2. 
In sufficiently thick samples, the sorption rate decreases 
significantly after initial penetration (see e.g. refs 4 -6) ,  
while the sorption rate accelerates in sufficiently thin 
samples as equilibrium is approached (Super Case II 
transport). 

A sharp moving boundary exists within the sample, 
separating an outer shell containing an appreciable amount 
of solvent from an internal core which is essentially unpene- 
trated and, therefore, remains glassy. 

Many previous attempts to provide a satisfactory mathe- 
matical description of this anomalous mass transfer beha- 
viour rely on the assumption that the diffusion coefficient 
varies strongly with penetrant composition ~3-'s. According 
to this viewpoint no special resistance to mass transfer is 
associated with the swollen-glassy polymer transition. 

On the contrary the observed behaviour seems to be ex- 
plained in terms of 'relaxation-controlled diffusion'. Accor- 
ding to this interpretation, the rate controlling process is the 
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transition from the glassy to the swollen state taking place at 
the moving boundary. 

In an early formulation, Peterlin 16 considered a moving 
boundary diffusion problem; the velocity of  the moving 
boundary was considered a constant given value, and diffu- 
sion was considered into the glassy core. In a recent paper, 
Astarita and Sarti 17 have shown that the introduction of a 
kinetic expression for the velocity of the glassy-swollen 
interface is sufficient to explain qualitatively the relevant 
features of the 'relaxation-controlled' transport. In the 
simple formulation given by Astarita and Sarti 17, the diffu- 
sion coefficient was taken as a constant in the swollen phase 
and zero in the glassy core; the penetrant equilibrium at the 
solvent-swelling polymer interface was assumed to occur 
instantaneously at time t = 0 and, finally, the velocity ~ of 
of the swelling front was assumed to obey a phenomenologi- 
cal power law expression: 

= K ( C -  C*) n when C >  C* 

X= 0 when C<~C* (1) 

In spite of the simplicity of these assumptions, the pene- 
tration depth, as well as the weight gain, is indeed a linear 
function of time, until the resistance due to diffusion in the 
swollen layer is comparable to the mass transport resistance 
confined to the advancing front. At later times, both weight 

• . i /2 gain and penetration depth decelerate and tend to the L 
law because the diffusion resistance becomes the rate- 
controlling step. The role of temperature in deciding what 
are the rate-controlling processes can easily be taken into 
account by using Arrhenius type equations for the kinetic 
constant and the diffusion coefficient. 

The model developed in ref 17 demonstrates that the 
rate-controlling process is often the phase transition which 
occurs at the glassy-swollen interface. However, the assump- 
tions used result in an oversimplification of the real pheno- 
mena, mainly with respect to the following points: 

(i) the kinetics of the advancing front, empirically des- 
cribed by a power law, are given by a first guess expression, 
with no physical basis• 
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(ii) the diffusion coefficient in the swollen phase is taken 
as a constant; 

(iii) the equilibrium at the solvent-swollen polymer inter- 
face is assumed to be reached instantaneously while the 
polymer matrix undoubtedly requires a certain time to 
achieve the equilibrium swelling demanded by the solvent 
activity; 

(iv) no convective term is considered in spite of the 
swelling phenomenon. 

(v) the diffusion coefficient is taken as zero in the glassy 
core. 

Of course, not all the points above are of the same im- 
portance. For instance, improvement of the points (iii) and 
(v) result in a better interpretation of the initial behaviour 
of the diffusion process but has very little effect on the sub- 
sequent behaviour. On the contrary, the kinetics of the ad- 
vancing front are of crucial importance in most cases and 
further detailed analysis of its mechanism seems appropriate. 
So far, the existence of an advancing boundary is just accep- 
ted as an experimental fact, but it is not well understood 
how to relate it to the physical properties of both penetrant 
and polymer. A better understanding of this step is needed. 
Useful indications can come from it in the prediction of the 
behaviour of solvent-polymer pairs different from those 
directly investigated. 

The primary objective of this work is to formulate a kine- 
tic model for the swelling rate, in which the velocity of the 
advancing front is expressed in terms of independently 
measurable quantities. 

A preliminary thermodynamic analysis is first considered, 
to establish some relevant relationships among the phases of 
the typical system showing Case II sorption behaviour. An 
evaluation of the solvent-induced stresses is then found. The 
latter is used, together with some mechanical properties of 
the glassy polymer, to formulate a kinetic equation which 
predicts the sorption rate when the glassy-swollen transition 
takes place. 

THERMODYNAMIC ANALYSIS AND THE SOLVENT- 
INDUCED STRESS 

Consider a typical system in which a moving boundary pro- 
cess takes place. The penetrant has a finite solubility in the 
polymer matrix while the polymer is almost insoluble in the 
low molecular weight liquid. At equilibrium, therefore, the 
system presents a miscibility gap, the boundaries of which are 
almost pure solvent and equilibrium swollen polymer. The 
latter is typically above its glass transition temperature. 

During the sorption process three phases are present: pure 
solvent, swollen polymer and glassy polymer. An expression 
for the chemical potentials is needed to provide for a mathe- 
matical description of the phases present. It is known that 
this can be obtained by using either Prigogine's correspond- 
ing state theory ls'19 or the Flory-Huggins theory 2°'21. Since 
it was proved by Biros et al. 22 that remarkably similar results 
are found using either approach, the commonly used F lo ry -  
Huggins treatment will be followed in the analysis presented 
here. 

With reference to a single molecular weight polymer, the 
following well-known expression for the Gibbs free energy 
of mixing is assumed: 

AGM 

R T  
- nllnV 1 + n21nv 2 + XlnlV2 (2) 

In equation (2) subscripts 1 and 2 refer to solvent and 
polymer respectively, n 1 and n2 are numbers of moles, v 1 
and v 2 represent volume fractions. If the ratio 1IX between 
solvent and polymer molar volumes is negligible with respect 
to unity, the following expressions for the chemical poten- 
tials hold true: 

R T  
- -  - l n v  l + ( 1 - v l ) + X l ( l - v l )  2 (3) 

12 2 _ #0 

XRT 
2 + l l n ( 1  Vl ) - - -  Vl + X1 Vl (4) 

The symbols/a 0 and/~0 have been used for the chemical 
potentials of the pure substances. The above description is 
sufficient to provide for an evaluation of the driving force 
for swelling. Here, only the effects due to the solvent pre- 
sence are considered, irrespective of the sample dimensions 
and geometry. Therefore a sufficiently large slab will be con- 
sidered so that only local effects will be relevant. Moreover, 
in such a case we can neglect the thickness of the region in 
which the glassy-swollen transition occurs, and consider it 
to take place at a plane surface. The effects related to 
sample dimensions are briefly discussed in the Conclusions. 

The driving force for swelling is related to the non- 
equilibrium conditions encountered at the moving boundary. 
On both sides of it, polymer molecules are present with dif- 
ferent chemical potentials. In the pure polymer side the 
chemical potential is/a 0, while in the swollen polymer side 
the chemical potential has been lowered by the solvent to the 
value/2 2 . 

The driving force for the process can thus be expressed 
in terms of Gibbs free energy difference per mol, as/a 0 - / 2  2. 
In other words it is given by the chemical potential de- 
crease due to the solvent concentration on the swollen side. 

It is convenient to evaluate the mechanical stress which 
is equivalent to that driving force. In the present problem, 
this can be done easily by calculating what stress must be 
exerted on the pure polymer, in order to obtain a chemical 
potential decrease equal to that caused by the penetrant 
volume fraction. To this end, a pressure decrease lr is needed 
on the glassy matrix, such that: 

//2 =/~0 _ rr V 2 ( 5 )  

In equation (5) the polymer molar volume V2 has been con- 
sidered to be a constant. Applying equation (4) the follow- 
ing result is obtained 

R T  1 
7r = - -  [v 1 -- XI v2 In(1 - vl)l  (6) 

The solvent molar volume V 1 has been substituted for the 
ratio V2/X. 

Equation (6) represents an important result and will be 
crucial in the following. Clearly n is positive; thus an iso- 
tropic tension must be exerted on the pure glassy polymer 
in order to obtain the same decrease in the chemical poten- 
tial as that induced by the solvent presence. Equivalently, 
rr can be regarded as the overpressure which should be im- 
posed on the swollen phase in order to compensate for the 
change in chemical potential due to the solvent. In other 
words, lr can be considered as the pressure which equilibrates 
the stresses due to the solvent presence. It is assumed that 
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equation (6) gives the stresses induced by the solvent on the 
pure polymer at the glassy-swollen interface. 

The same result can equivalently be found by considering 
the following isothermal equilibrium: 

Pure polymer ~ Polymer in the swollen phase (7) 

Equilibrium (7) can be considered 'osmotic' insofar as the 
following characteristics are obeyed: 

(a) phase equilibrium is reached only for one component 
and not for the other; 

(b) such equilibrium can be obtained only by applying a 
suitable pressure difference. 

This observation allows us to refer to the solvent-induced 
stress as to an osmotic stress#, as is sometimes done in the 
existing qualitative descriptions. 

Focussing attention on the swollen-penetrant interface, 
we can evaluate the solvent concentration using straightfor- 
ward equilibrium considerations. Since the polymer is in- 
soluble in the low molecular weight liquid, in that phase the 
equilibrium solvent activity remains at a constant value a 0 
chosen before sorption. The equilibrium composition in the 
swollen phase is thus given by: 

lna 0 = lnv l + (1 - Vl) + XI(1 - Vl) 2 (8) 

In view of the particular miscibility gap which is to be 
encountered, the Flory interaction parameter must have a 
sufficiently high value. Roughly, it can be said that the im- 
miscibility condition is fulfilled for all molecular weights of 
practical interest, when 

X1 > 0.62 (9) 

KINETICS OF PENETRATION: A COMPREHENSIVE 
MODEL 

In order to make suggestions for a kinetic equation of the 
advancing front it is convenient at this stage to analyse some 
mechanical properties of the pure polymer. In particular, 
we shall consider the crazing-under-stress behaviour of the 
glassy matrix, which seems to be strictly related to the phe- 
nomena here examined. 

Above a critical value of the tensile stress, crazes are 
formed in a glassy polymer. The propagation of crazes occurs 
in the direction perpendicular to the tensile stress, starting 
from existing microvoids often located at the sample surface. 

Depending on experimental conditions, a sharp front 
separating crazed and uncrazed material can be observed be- 
cause of the different optical properties of the two regions. 
The propagation rate of that front usually increases by in- 
creasing the applied tensile stress. 

The crazing behaviour of a glass is commonly analysed b y  
applying a uniaxial tensile stress, a. By measuring the craze 
penetration depth, X, with time, the functional dependence 
of the crazing rate upon the stress is experimentally deter- 
mined. Formally we have: 

J- Possible confusion must be#voided about this point. The os- 
motic pressure usually considered for dilute polymer solutions is a 
completely different quantity. It derives from a different osmotic 
equilibrium, i.e. that between solution and pure solvent. This latter 
osmotic pressure clearly cannot be used here as a measure of the 
solvent-induced stress. It would be sufficient to observe that it de- 
creases with increasing solvent concentration 

Prediction of Case II transport kinetics: Giulio 6". Sarti 

=;(o) o >1 oc 

)t=O O<Oc (10) 

In equation (10), o c indicates the threshold value of the 
stress above which crazing takes place. Many similarities 
exist between mechanical crazing and Case II sorption beha- 
viour. Indeed, the elementary physical steps occurring in 
both cases appear similar. Both phenomena require that the 
highly packed glassy state move towards a structure in 
which a high free volume is present. The difference between 
the processes is confined to the driving force, which is the 
applied stress in one case, and the effect of the solvent in the 
other. 

Several analogies are also found from a phenomenological 
viewpoint: (i) in both cases the phenomenon starts when the 
driving force (tensile stress or solvent activity) exceeds a cer- 
tain threshold value; (ii) the higher the driving force, the 
higher is the front propagation rate; (iii) a sharp moving 
boundary separating the two regions is clearly visible. More- 
over, it must be observed that in many cases in which Case 
II sorption exists, visible crazes are also found which are 
usually referred to as solvent crazes. The kinetics of the two 
phenomena are, presumably, strictly related to each other. 

However, while in solvent crazing one refers to an iso- 
tropic tension, 7r, given by equation (6), in the usual mecha- 
nical tests a uniaxial tension, a, is considered. The question 
then arises of the value of the uniaxial stress which can be 
considered equivalent to an isotropic tension, as far as craz- 
ing is concerned. In yielding mechanics, a uniaxial stress, 
o E, can be found which is equivalent to the applied triaxial 
stress according to a suitable yield criterion (Tresca, 
Beltrami, von Vises, etc.). In particular, when the applied 
stress is an isotropic tension 7r, the uniaxial equivalent stress 
OE is given by: 

o E  = aTr ( 1 1 )  

The proportionality constant a has a precise value depen- 
ding upon the yield criterion chosen. In all cases, however, 
the order of magnitude of 'a '  is unity. Although crazing and 
yielding are not the same physical phenomenon, they occur 
at nearly the same stress levels, and therefore the equivalence 
relationships used in the case of yielding are considered to 
hold true for crazing phenomena as well. 

Due to the uncertainty about the yield criterion to be 
chosen, however, and since the yield criterion changes with 
temperature (especially close to Tg) it is convenient to con- 
sider a as an adjustable parameter with the only requirement 
that it be of order unity. 

The kinetic equation of Case II transport can then be sum- 
marized as follows: 

(1) the solvent presence at the inner interface induces an 
isotropic tension given by equation (6) on the glassy matrix, 
which is then transformed to an equivalent uniaxial tension 
o E by me ans of equation (11); 

(2) the velocity of the advancing front, separating the 
swollen region from the glassy matrix, is given by the rate 
equation for mechanical crazing, equation (10), in which the 
applied stress has been substituted by the equivalent stress a E. 

Compar ison  wi th  e x p e r i m e n t s  

A significant comparison of the proposed kinetic model 
with experimental data can be made only for polymers which 
have been sufficiently analysed both for mechanical proper- 
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Figure 1 Temperature dependence of the parameter a and of the 
critical stress Oc/a: &, n-pentane; (3, n-hexane; A, n-heptane; t3 n-  

octane. Activation energy used: AE = 40 (kcal tool --l) 

ties and sorption behaviour. In order not to introduce other 
assumptions, concerning for example the diffusion coefficient, 
the density, etc., a proper test for the kinetic model must be 
made by considering the initial front velocity data. In such 
a case, the solvent volume fraction at the interface is the 
equilibrium volume fraction, which is known or at least easily 
predictable. 

We have thus chosen a single polymer, polystyrene and 
various n-alkanes as diffusing species. In this case experi- 
mental data exist both for the mechanical crazing kinetics 2x24 
and for the swelling behaviour ~-4. 

The experiments by Sauer and Hsiao, ref 24, have shown 
that the crazing penetration rate is a linear function of the 
applied uniaxial tensile stress, given by: 

' )~ : K ( o  - t i c )  o > o c (12) 

At room temperature the values reported for K and o c are 
the following 

in 
K = 0 . 8 5 x 1 0  - 7 -  ; o c = 1670p.s.i. 

h psi 
(13) 

When use is made of the data o f re f  23, at 3500 psia, it 
can be shown that the kinetic constant K changes with tern- 
perature following an Arrhenius law: 

K = K 0 e - a E / R T  (14) 

The evaluated activation energy AE is about 40 kcal mo1-1 
the corresponding K 0 value is 1.918 x 1020 cm (sec atm) -1 

The critical stress, Oc, varies with temperature and 
vanishes at the glass transition; experimental evidence shows 

that o c decreases linearly with increasing temperature to- 
wards Tg2S'~: 

oc =A(rg-  73 (15) 

According to the kinetic model formulated, the swelling 
rate into the polystyrene matrix is given by: 

= K(arr - ac)  (16) 

where the constants K and o c are given by equations (14) 
and (15), respectively. More explicitly, the values of K and 
o c are independent of the nature of the penetrant and are 
only related to the properties of the polymer matrix. With 
changing the chemical nature of the solvent, Flory's para- 
meter changes and a different solvent stress is obtained. 

The comparison with the initial front velocity data re- 
ported in ref 4 can be done provided the equilibrium com- 
position is known. Equilibrium data are not reported at all 
temperatures examined in ref 4. Therefore the equilibrium 
volume fractions were here evaluated using the equilibrium 
equation (8). The Flory interaction parameter was evaluated 
using the regular solution theory by Hildebrand and 
Scatchard 27. Since non-polar components are considerd, 
according to Blank and Prausnitz 2a, the following expression 
was used: 

vl 
×1 = 0.34 + (61 - 52) 2 (17) 

R T  

The value 0.34 stands for the average value of the entropic 
contribution ×s. The values used for the solubility para- 
meters, reported in ref 28. 

The solvent-induced stress was evaluated using equation 
(6), with ×1 given by equation (17) and v 1 given by the 
corresponding equilibrium composition in the swollen 
phase. 

Equation (16) was then used to calculate the value of 
parameter a, which is needed to obtain the experimental 
front velocity value. The results of these calculations are 
reported in Figure  1. 

It can be seen that parameter a ranges from 7.0 at 30°C 
(n-pentane), to 0.86 at 75°C (n-octane). At a given tempe- 
rature, a has the same value for all the solvents considered, 
to within 12%. This property is in full agreement with the 
predictions of the model, in which a enters as a factor de- 
pending upon the yield behaviour of the pure matrix alone. 
The value of a is of the order of magnitude predicted by the 
theory, although it is not a constant value. It is found to be 
a function of temperature, decreasing with increasing T. 
The latter property was not expected and is accepted here 
on a phenomenological basis. 

The data reported in Figure  I are obtained using an acti- 
vation energy for K of 40 kcal mo1-1. In Fi gure  2 ,  it is 
shown that the change in a values with changing solvent can 
be maintained to within 6% by simply using a slightly diffe- 
rent activation energy and the corresponding K0 value, i.e. 
A E =  45 kcal mo1-1 andKo = 8.917 x I023 cm (sec atm) -1. 
Some relevant data used in the above calculations are repor- 
ted in Table  1. 

DISCUSSION AND CONCLUSIONS 

A schematic analysis was considered of systems in which 
Case II sorption behaviour is encountered. Some essential 
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features have been pointed out, which lead to the formula- 
tion of a kinetic equation for the swelling front velocity. An 
important result concerns the evaluation of the solvent- 
induced stresses, obtained through equations (5) and (6). 

We then assumed the kinetics of  the swelling front to be 
exactly the same kinetics encountered in pure mechanical 
crazing. This hypothesis enables us to construct a model in 
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Figure 2 Temperature dependence of the parameter a and the 
critical stress ac/a" A, n-pentane; O, n-hexane; A, n-heptane; 13 n- 
octane. Activation energy used: AE = 45 (kcal tool - I )  
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which only one adjustable parameter is present, the order of 
magnitude of which is unity. That parameter, a, is strictly 
related to the yield behaviour of the pure glassy matrix and 
is independent of the particular solvent considered. These 
predictions are completely in agreement with the experimen- 
tal behaviour presented by PS-n-alkane systems for which 
the maximum deviation presented by a with changing solvent 
is around 10%. A comparison with existing experimental 
data for PS, shows that a is a temperature-dependent pro- 
perty of the polymer matrix, ranging from 7.0 at 30°C to 
0.86 at 75°C. 

The predictive ability of the proposed model must be 
stressed. On the basis of the experimental behaviour en- 
countered in tests different from sorption, i.e. pure mecha- 
nical experiments and equilibrium thermodynamics, the 
order of magnitude is evaluated for the velocity of the ad- 
vancing front, without doing any preliminary so~ption ex- 
periments (a ranges between 0.86 and 7.0). If, in addition, 
the sorption behaviour of only one solvent has been pre- 
viously analysed, the parameter a can be found as a function 
of temperature and can be used to obtain better predictions 
for the sorption of all other solvents. In the latter case, the 
maximum deviation between predictions and experiments 
is less than 12% in the cases examined. These results seem 
very encouraging; at least, they allow us to believe that in the 
present model the most relevant effects which determine Case 
II sorption behaviour have been taken into account 
quantitatively. 

Clearly, the 0roposed kinetics can be used when the sol- 
vent stress exceeds the lower limiting value necessary for craze 
propagation. This observation, together with the thermo- 
dynamic properties of the system, allows us to predict 
whether or not in a given polymer-solvent pair Case II 
transport will be encountered. In fact, the parameter ×1 
can be estimated for many systems, according to existing 
procedures (see ref 28). If ×I is sufficiently large, say larger 
than 0.62, the insolubility condition for the polymer is 
obeyed, and the proper miscibility gap will be present. After 
the evaluation of the equilibrium composition in the swollen 
phase, through equation (8), the value of the solvent osmotic 
stress can be calculated. Case II behaviour is expected when 

Table I Values of Flory's interaction parameter, solvent osmotic stress, critical stress used to evaluate the model parameter a. The values of 
are experimental (see ref 4) 

E = 40 kcal mol - I  ~ E  = 45 kcal mo1-1 

T ~T 0 c h X 106 Oc/a ac/a 
(° C) ×1 (atm) (atm) (cm sec -1 ) a (atm) a (atm) 

nCs 

nC6 

nC7 

nC8 

30 1.183 35.5 106.1 0.39 7.0 15.0 6.5 16.2 

35 1.047 38.0 98.5 0.89 5.6 17.7 4.8 20.5 
40 1.035 39.2 91.0 2.08 4.7 19.4 3.9 23.2 
45 1.024 40.4 83.4 3.56 3.5 23.9 2.9 28.7 
50 1.014 41.6 75.8 5.33 2.6 29.1 2.2 34.3 
55 1.004 42.8 68.2 7.55 2.0 34.1 1.8 37.8 

45 1.016 37.0 83.4 1.84 3.1 27.2 2.7 30.8 
50 1.005 38.4 75.8 3.50 2.5 30.1 2.3 32.8 
55 0.995 39.5 68.2 5.33 2.0 34.1 1.9 35.8 
60 0.985 40.6 60.6 7.11 1.7 38.6 1.6 37.8 
70 0.966 42.9 45.5 10.2 1.1 41.4 1.1 42.4 

55 0.907 40.3 68.2 2.78 1.9 36.8 1.8 38.3 
60 0.898 41.7 60.6 4.28 1.6 39.1 1.5 40.4 
65 0.890 42.7 53.1 5.00 1.3 41.2 1.3 42.1 
70 0.882 43.8 45.5 7.17 1.1 42.7 1.0 43.5 
75 0.874 45.0 37.9 9.44 0.86 44.2 0.85 44.5 
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the solvent stress is larger than the critical stress for craze 
propagation. In the w a t e r - P S  system, for instance, 
the solubility of  water in the polymer is too low to obtain 
an appreciable solvent stress, and Case II sorption is not  
encountered. 

One further observation is worthwhile, In the present 
work, at tention has been restricted to the local stress effects 
due to the solvent. These are always present, irrespective of  
the sample dimensions; the latter however are sometimes 
responsible for significant changes in sorption behaviour. 
Such effects can easily be taken into account within the 
theory presented here. To this end, it is sufficient to add to 
the solvent osmotic stress (equation 6), another term which 
accounts for the 'overall effects '  due to sample geometry 
and shape. This term can be calculated following just the 
same procedure shown by Alfrey et  al. 30, and recently used, 
in a more elaborate context  by Petropoulos and Roussis 31. 
It is easy to show that this last term satisfactorily explains 
the Super Case II effects presented by thin samples. The de- 
tailed analysis of  this effect will be examined in future work. 
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